Autor: |
Ying Han, Shizhe Feng, Ke Cao, Yuejiao Wang, Libo Gao, Zhiping Xu, Yang Lu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Cell Reports Physical Science, Vol 1, Iss 8, Pp 100172- (2020) |
Druh dokumentu: |
article |
ISSN: |
2666-3864 |
DOI: |
10.1016/j.xcrp.2020.100172 |
Popis: |
Summary: Monolayer hexagonal boron nitride can serve in optoelectronics or as a dielectric in graphene and other two-dimensional (2D) electronics due to its ultra-wide band gap. As there is no center of symmetry, monolayer hexagonal boron nitride (h-BN) also shows piezoelectricity. However, these applications require h-BN to sustain large uniform elastic deformation, which has yet to be demonstrated. Here, we report, by tensile testing, that a large elastic strain up to 6.2% is achieved for defect-scarce polycrystalline h-BN monolayers, with corresponding 2D Young’s modulus ∼200 N/m, close to the ideal value measured by atomic force microscopy (AFM). Furthermore, samples containing voids of ∼100 nm can be strained up to 5.8%. Atomistic and continuum simulations show that compared to the imperfections introduced during sample preparation, the elastic limit of h-BN is virtually immune to naturally occurring atomistic defects and is gradually lowered by submicrometer voids. The mechanical robustness of h-BN monolayers, along with the large uniform elasticity, is encouraging for strain engineering and piezoelectronics applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|