Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms

Autor: L. M. Tomkins, S. E. Yuter, M. A. Miller
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Atmospheric Measurement Techniques, Vol 17, Pp 3377-3399 (2024)
Druh dokumentu: article
ISSN: 1867-1381
1867-8548
DOI: 10.5194/amt-17-3377-2024
Popis: Radar observations of winter storms often exhibit locally enhanced linear features in reflectivity, sometimes labeled as snow bands. We have developed a new, objective method for detecting locally enhanced echo features in radar data from winter storms. In comparison to convective cells in warm season precipitation, these features are usually less distinct from the background echo and often have more fuzzy or feathered edges. This technique identifies both prominent, strong features and more subtle, faint features. A key difference from previous radar reflectivity feature detection algorithms is the combined use of two adaptive differential thresholds, one that decreases with increasing background values and one that increases with increasing background values. The algorithm detects features within a snow rate field rather than reflectivity and incorporates an underestimate and overestimate of feature areas to account for uncertainties in the detection. We demonstrate the technique on several examples from the US National Weather Service operational radar network. The feature detection algorithm is highly customizable and can be tuned for a variety of data sets and applications.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje