Autor: |
Jianxin Tan, Yajun Wang, Siliang Wang, Simeng Wu, Zhe Yuan, Xike Zhu |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Cell & Bioscience, Vol 9, Iss 1, Pp 1-15 (2019) |
Druh dokumentu: |
article |
ISSN: |
2045-3701 |
DOI: |
10.1186/s13578-019-0311-1 |
Popis: |
Abstract Background Adipocyte accumulation is a predominant feature of age-related thymic involution, but the mechanisms responsible for thymic adipogenesis remain to be elucidated. The aim of this study was to identify key regulators in thymic adipogenesis. We used rosiglitazone, a potent peroxisome proliferator-activated receptor γ (PPARγ) agonist, to induce adipogenic differentiation of OP9-DL1 cells, and investigated the differentially expressed proteins during adipogenic differentiation by using label-free quantitative proteomics. Furthermore, the effects of transforming growth factor β1 (TGF-β1) on rosiglitazone-induced adipogenic differentiation of OP9-DL1 cells as well as the underlying mechanisms were also investigated. Results Proteomic analysis identified 139 proteins differed significantly in rosiglitazone-treated cells compared with dimethyl sulphoxide (DMSO)-treated cells. Rosiglitazone-induced adipogenic differentiation was inhibited by TGF-β1 treatment in OP9-DL1 cells and primary thymic stromal cells. Real-time PCR analysis showed significant increases in PPARγ and fatty acid binding protein 4 mRNA levels in rosiglitazone-treated cells, which were inhibited by TGF-β1 treatment. TGF-β1 down-regulated PPARγ expression at both mRNA and protein levels in OP9-DL1 cells. Chromatin immunoprecipitation analysis demonstrated that TGF-β1 enhanced the binding of Smad2/3 and histone deacetylase 1, but reduced the binding of H3K14ac to the promoter of PPARγ gene. TGF-β1 partially reversed the inhibitory effects of rosiglitazone on the expression of Axin2 and β-catenin protein levels. TGF-β1 inhibited rosiglitazone-induced adipogenic transformation in OP9-DL1 cells by down-regulation of PPARγ and activation of the canonical Wnt/β-catenin signaling pathway. Conclusion Taken together, activation of TGF-β pathway may serve as a useful strategy to prevent thymic adiposity in age-related thymic involution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|