Autor: |
Fernando Córdova-Lepe, Juan Pablo Gutiérrez-Jara, Gerardo Chowell |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 12, p 1793 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12121793 |
Popis: |
In this paper, we examine the epidemiological model B-SIR, focusing on the dynamic law that governs the transmission rate B. We define this dynamic law by the differential equation B′/B=F⊕−F⊖, where F⊖ represents a reaction factor reflecting the stress proportional to the active group’s percentage variation. Conversely, F⊕ is a factor proportional to the deviation of B from its intrinsic value. We introduce the notion of contagion impulse f and explore its role within the model. Specifically, for the case where F⊕=0, we derive an autonomous differential system linking the effective reproductive number with f and subsequently analyze its dynamics. This analysis provides new insights into the model’s behavior and its implications for understanding disease transmission. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|