An area‐efficient memory‐based multiplier powering eight parallel multiplications for convolutional neural network processors
Autor: | Seongrim Choi, Suhwan Cho, Byeong‐Gyu Nam |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Electronics Letters, Vol 57, Iss 15, Pp 573-575 (2021) |
Druh dokumentu: | article |
ISSN: | 1350-911X 0013-5194 |
DOI: | 10.1049/ell2.12206 |
Popis: | Abstract Convolutional neural network (CNN) is widely used for various deep learning applications because of its best‐in‐class classification performance. However, CNN needs several multiply‐accumulate (MAC) operations to realize human‐level cognition capabilities. In this regard, an area‐efficient multiplier is essential to integrate a large number of MAC units in a CNN processor. In this letter, we present an area‐efficient memory‐based multiplier targeting CNN processing. The proposed architecture adopts a 32‐port memory shared across eight multiplications. Simulation results show that area is reduced by 18.4% compared with the state‐of‐the‐art memory‐based multiplier. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |