Autor: |
Xue Lai,, Shiyan Chen,, Xiaoyu Gu,, Hanjian Lai,, Yunpeng Wang,, Yulin Zhu,, Hui Wang,, Jianfei Qu,, Aung Ko Ko Kyaw, Haiping Xia, Feng He |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-39223-9 |
Popis: |
Abstract To restrain the chemical reaction at cathode interface of organic solar cells, two cathode interfacial materials are synthesized by connecting phenanthroline with carbolong unit. Consequently, the D18:L8-BO based organic solar cell with double-phenanthroline-carbolong achieve the highest efficiency of 18.2%. Double-phenanthroline-carbolong with larger steric hindrance and stronger electron-withdrawing property confirms to suppress the interfacial reaction with norfullerene acceptor, resulting the most stable device. Double-phenanthroline-carbolong based device can sustain 80% of its initial efficiency for 2170 h in dark N2 atmosphere, 96 h under 85 oC and keep 68% initial efficiency after been illuminated for 2200 h, which are significantly better than bathocuproin based devices. Moreover, superb interfacial stability of double-phenanthroline-carbolong cathode interface enables thermal posttreatment of organic sub-cell in perovskite/organic tandem solar cells and obtained a remarkable efficiency of 21.7% with excellent thermal stability, which indicates the potentially wide application of phenanthroline-carbolong materials for stable and efficient solar device fabrications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|