Autor: |
Aiste Dirzyte, Aidas Perminas, Lukas Kaminskis, Giedrius Žebrauskas, Živilė Sederevičiūtė – Pačiauskienė, Jolita Šliogerienė, Jelena Suchanova, Romualda Rimašiūtė – Knabikienė, Aleksandras Patapas, Indre Gajdosikiene |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 9, Iss 12, Pp e22113- (2023) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2023.e22113 |
Popis: |
Previous studies reported that acquiring computer programming skills is challenging and might result in high dropout rates. A quasi-experimental design was used to examine the role of different factors in dropping out of an e-based computer programming course. This study applied a knowledge in programming assessment test (20 multiple-choice questions covering the following topics: variables, loops, conditionals, functions, and general knowledge of Python), The Learning Motivating Factors Questionnaire, The Big Five-2, and The Basic Psychological Need Satisfaction & Frustration Scale. Ninety-four participants (38 males and 56 females) completed the course, while 305 participants started it. The mean age of e-learners was 29.96 years (SD 8.27), age range = 18 to 54. The results showed that e-learners who completed the course had higher initial knowledge assessment scores than those who dropped out after the first assessment. Reward and recognition as a motivator were significantly higher in males who completed the course than those who dropped out after the second knowledge assessment. Extraversion was significantly lower in females who completed the course than those who dropped after the first or second knowledge assessment test. Relatedness frustration was significantly higher in those who dropped out after the first knowledge assessment. Due to significant limitations of the sample size, cultural context, measures applied, and research design, the findings would preferably be regarded with caution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|