Detection of SARS-CoV-2 infection by microRNA profiling of the upper respiratory tract.

Autor: Ryan J Farr, Christina L Rootes, John Stenos, Chwan Hong Foo, Christopher Cowled, Cameron R Stewart
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: PLoS ONE, Vol 17, Iss 4, p e0265670 (2022)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0265670
Popis: Host biomarkers are increasingly being considered as tools for improved COVID-19 detection and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) during SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with 99.9% accuracy. Here we sought to develop a signature suited for clinical application by analyzing specimens collected using minimally invasive procedures. Eight miRNAs displayed altered expression in anterior nasal tissues from COVID-19 patients, with miR-142-3p, a negative regulator of interleukin-6 (IL-6) production, the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-30c-2-3p, miR-628-3p and miR-93-5p) independently classifies COVID-19 cases with 100% accuracy. This study further defines the host miRNA response to SARS-CoV-2 infection and identifies candidate biomarkers for improved COVID-19 detection.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje