Autor: |
Ryan J Farr, Christina L Rootes, John Stenos, Chwan Hong Foo, Christopher Cowled, Cameron R Stewart |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 17, Iss 4, p e0265670 (2022) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0265670 |
Popis: |
Host biomarkers are increasingly being considered as tools for improved COVID-19 detection and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) during SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with 99.9% accuracy. Here we sought to develop a signature suited for clinical application by analyzing specimens collected using minimally invasive procedures. Eight miRNAs displayed altered expression in anterior nasal tissues from COVID-19 patients, with miR-142-3p, a negative regulator of interleukin-6 (IL-6) production, the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-30c-2-3p, miR-628-3p and miR-93-5p) independently classifies COVID-19 cases with 100% accuracy. This study further defines the host miRNA response to SARS-CoV-2 infection and identifies candidate biomarkers for improved COVID-19 detection. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|