Autor: |
Maruthai Selvaraj Surendar, Muniagounder Sambath, Krishnan Balachandran, Yong-Ki Ma |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-21 (2023) |
Druh dokumentu: |
article |
ISSN: |
1687-2770 |
DOI: |
10.1186/s13661-023-01771-w |
Popis: |
Abstract In this study, we consider a prey–predator model with prey refuge and intraspecific competition between predators using the Crowley–Martin functional response and investigate the dynamic characteristics of spatial and nonspatial prey–predator systems via both analytical and numerical methods. The local stability of nontrivial interior equilibrium, the existence of a Hopf bifurcation, and the stability of bifurcating periodic solutions are obtained in the absence of diffusion. For the spatial system, the Turing and non-Turing patterns are evaluated for some set of parametric belief functions, and we obtain some interesting results in terms of prey and predator inhabitants. We present the results of numerical simulations that demonstrate that both prey and predator populations do not converge to a stationary equilibrium state at any foreseeable future time when the parametric values are processed in the Turing domain. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|