Autor: |
Mahdieh Alipour, Marjan Ghorbani, Masume Johari khatoonabad, Marziyeh Aghazadeh |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-23708-6 |
Popis: |
Abstract Polyetheretherketone (PEEK) is an organic material introduced as an alternative for titanium implants. Injectable hydrogels are the most promising approach for bone regeneration in the oral cavity to fill the defects with irregular shapes and contours conservatively. In the current study, injectable Aldehyde-cellulose nanocrystalline/silk fibroin (ADCNCs/SF) hydrogels containing PEEK were synthesized, and their bone regeneration capacity was evaluated. Structure, intermolecular interaction, and the reaction between the components were assessed in hydrogel structure. The cytocompatibility of the fabricated scaffolds was evaluated on human dental pulp stem cells (hDPSCs). Moreover, the osteoinduction capacity of ADCNCs/SF/PEEK hydrogels on hDPSCs was evaluated using Real-time PCR, Western blot, Alizarin red staining and ALP activity. Bone formation in critical-size defects in rats’ cranial was assessed histologically and radiographically. The results confirmed the successful fabrication of the hydrogel and its osteogenic induction ability on hDPSCs. Furthermore, in in vivo phase, bone formation was significantly higher in ADCNCs/SF/PEEK group. Hence, the enhanced bone regeneration in response to PEEK-loaded hydrogels suggested its potential for regenerating bone loss in the craniofacial region, explicitly surrounding the dental implants. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|