Autor: |
Won Taek Jung, Hyun-Seok Jang, Sang Moon Lee, Won G. Hong, Young Jin Bae, Hyo Seon Lee, Byung Hoon Kim |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 10, Iss 2, Pp e24425- (2024) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2024.e24425 |
Popis: |
Electronic textile-based gas sensors with a high response for NO2 gas were fabricated using reduced graphene oxide (rGO)-coated commercial cotton fabric (rGOC). Graphene oxide (GO) was coated on cotton fabric by simply dipping the cotton into a GO solution. To investigate the relationship between the degree of reduction and the sensing response, the GO-coated fabrics were thermally reduced at various temperatures (190, 200, 300, and 400 °C). The change in the amount of oxygen functional groups on the rGOCs was observed by x-ray photoelectron spectroscopy, Raman spectroscopy, and x-ray diffraction patterns. The maximum sensing response of 45.90 % at 10 ppm of NO2 gas at room temperature was exhibited by the rGOC treated at 190 °C, which was the lowest heat-treatment temperature. The high response comes from the greater amount of oxygen functional groups compared to other rGOC samples, and the tubular structure of the cotton. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|