Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning

Autor: Fabian Böhm, Diego Alonso-Urquijo, Guy Verschaffelt, Guy Van der Sande
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-13 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-33441-3
Popis: Ising machines are accelerators for computing difficult optimization problems. In this work, Böhm et al. demonstrate a method that extends their use to perform statistical sampling and machine learning orders-of-magnitudes faster than digital computers.
Databáze: Directory of Open Access Journals