Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds

Autor: Yushuang Fan, Tao Zheng
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 19, p 3132 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12193132
Popis: We introduce the continuity equation of transverse Kähler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique η-Einstein metric in the basic Bott–Chern cohomological class of the initial transverse Kähler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the Kähler metrics studied by La Nave and Tian, and also counterparts of the Sasaki–Ricci flow studied by Smoczyk, Wang, and Zhang.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje