On Z -Invariant Self-Adjoint Extensions of the Laplacian on Quantum Circuits

Autor: Aitor Balmaseda, Fabio Di Cosmo, Juan Manuel Pérez-Pardo
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Symmetry, Vol 11, Iss 8, p 1047 (2019)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym11081047
Popis: An analysis of the invariance properties of self-adjoint extensions of symmetric operators under the action of a group of symmetries is presented. For a given group G, criteria for the existence of G-invariant self-adjoint extensions of the Laplace−Beltrami operator over a Riemannian manifold are illustrated and critically revisited. These criteria are employed for characterising self-adjoint extensions of the Laplace−Beltrami operator on an infinite set of intervals, Ω , constituting a quantum circuit, which are invariant under a given action of the group Z . A study of the different unitary representations of the group Z on the space of square integrable functions on Ω is performed and the corresponding Z -invariant self-adjoint extensions of the Laplace−Beltrami operator are introduced. The study and characterisation of the invariance properties allows for the determination of the spectrum and generalised eigenfunctions in particular examples.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje