Endothelial Iron Homeostasis Regulates Blood-Brain Barrier Integrity via the HIF2α—Ve-Cadherin Pathway

Autor: Daniel Rand, Orly Ravid, Dana Atrakchi, Hila Israelov, Yael Bresler, Chen Shemesh, Liora Omesi, Sigal Liraz-Zaltsman, Fabien Gosselet, Taber S. Maskrey, Michal Schnaider Beeri, Peter Wipf, Itzik Cooper
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Pharmaceutics, Vol 13, Iss 3, p 311 (2021)
Druh dokumentu: article
ISSN: 1999-4923
DOI: 10.3390/pharmaceutics13030311
Popis: The objective of this study was to investigate the molecular response to damage at the blood-brain barrier (BBB) and to elucidate critical pathways that might lead to effective treatment in central nervous system (CNS) pathologies in which the BBB is compromised. We have used a human, stem-cell derived in-vitro BBB injury model to gain a better understanding of the mechanisms controlling BBB integrity. Chemical injury induced by exposure to an organophosphate resulted in rapid lipid peroxidation, initiating a ferroptosis-like process. Additionally, mitochondrial ROS formation (MRF) and increase in mitochondrial membrane permeability were induced, leading to apoptotic cell death. Yet, these processes did not directly result in damage to barrier functionality, since blocking them did not reverse the increased permeability. We found that the iron chelator, Desferal© significantly decreased MRF and apoptosis subsequent to barrier insult, while also rescuing barrier integrity by inhibiting the labile iron pool increase, inducing HIF2α expression and preventing the degradation of Ve-cadherin specifically on the endothelial cell surface. Moreover, the novel nitroxide JP4-039 significantly rescued both injury-induced endothelium cell toxicity and barrier functionality. Elucidating a regulatory pathway that maintains BBB integrity illuminates a potential therapeutic approach to protect the BBB degradation that is evident in many neurological diseases.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje