Brain MRI dataset of multiple sclerosis with consensus manual lesion segmentation and patient meta information

Autor: Ali M. Muslim, Syamsiah Mashohor, Gheyath Al Gawwam, Rozi Mahmud, Marsyita binti Hanafi, Osama Alnuaimi, Raad Josephine, Abdullah Dhaifallah Almutairi
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Data in Brief, Vol 42, Iss , Pp 108139- (2022)
Druh dokumentu: article
ISSN: 2352-3409
DOI: 10.1016/j.dib.2022.108139
Popis: Magnetic resonance imaging (MRI) provides a significant key to diagnose and monitor the progression of multiple sclerosis (MS) disease. Manual MS-lesion segmentation, expanded disability status scale (EDSS) and patient's meta information can provide a gold standard for research in terms of automated MS-lesion quantification, automated EDSS prediction and identification of the correlation between MS-lesion and patient disability. In this dataset, we provide a novel multi-sequence MRI dataset of 60 MS patients with consensus manual lesion segmentation, EDSS, general patient information and clinical information. On this dataset, three radiologists and neurologist experts segmented and validated the manual MS-lesion segmentation for three MRI sequences T1-weighted, T2-weighted and fluid-attenuated inversion recovery (FLAIR). The dataset can be used to study the relationship between MS-lesion, EDSS and patient clinical information. Furthermore, it also can be used for the development of automated MS-lesion segmentation, patient disability prediction using MRI and correlation analysis between patient disability and MRI brain abnormalities include MS lesion location, size, number and type.
Databáze: Directory of Open Access Journals