Graham's Pebbling Conjecture Holds for the Product of a Graph and a Sufficiently Large Complete Graph

Autor: Nopparat Pleanmani
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Theory and Applications of Graphs, Vol 7 (2020)
Druh dokumentu: article
ISSN: 2470-9859
DOI: 10.20429/tag.2020.070101
Popis: For connected graphs $G$ and $H$, Graham conjectured that $\pi(G\square H)\leq\pi(G)\pi(H)$ where $\pi(G), \pi(H)$, and $\pi(G\square H)$ are the pebbling numbers of $G$, $H$, and the Cartesian product $G\square H$, respectively. In this paper, we show that the inequality holds when $H$ is a complete graph of sufficiently large order in terms of graph parameters of $G$.
Databáze: Directory of Open Access Journals