Graham's Pebbling Conjecture Holds for the Product of a Graph and a Sufficiently Large Complete Graph
Autor: | Nopparat Pleanmani |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Theory and Applications of Graphs, Vol 7 (2020) |
Druh dokumentu: | article |
ISSN: | 2470-9859 |
DOI: | 10.20429/tag.2020.070101 |
Popis: | For connected graphs $G$ and $H$, Graham conjectured that $\pi(G\square H)\leq\pi(G)\pi(H)$ where $\pi(G), \pi(H)$, and $\pi(G\square H)$ are the pebbling numbers of $G$, $H$, and the Cartesian product $G\square H$, respectively. In this paper, we show that the inequality holds when $H$ is a complete graph of sufficiently large order in terms of graph parameters of $G$. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |