Popis: |
The vibration waves generated by pressure fluctuations can substantially impair and jeopardize the structural integrity of roadway anchorage within adjacent rock formations, thereby presenting a significant risk to the safety and operational efficiency of mining activities. In order to address this issue and elucidate the response characteristics of roadway-anchored surrounding rock subjected to P-wave and S-wave influences, this study employs a roadway that is experiencing actual impact instability within a mine situated in Xinjiang as the engineering context. The synchrosqueezing wavelet transform, enhanced by a Butterworth filter, is utilized to isolate and filter seismic wave data, thereby facilitating the extraction of time-frequency signals corresponding to both P-waves and S-waves. Subsequently, a dynamic numerical model is developed to simulate the propagation of these vibration waves. An analysis of the dynamic behavior and response characteristics of P-waves and S-waves is performed, focusing on their interaction with roadway anchoring within the surrounding rock at various stages of propagation. The results indicate that weak rock and plastic zones can absorb vibrational waves, with S-waves exhibiting a stronger absorption effect than P-waves. S-waves contribute to increased stress and displacement in the surrounding rock, leading to the accumulation of elastic energy and an expansion of the plastic zone. The rapid fluctuations in the axial force of bolts along the roadway, caused by S-waves, can result in instability within the roadway. The research findings possess considerable reference value and practical applicability for the design of anti-scour support systems in roadways. |