Seed classification with random forest models

Autor: Josephine Elena Reek, Janneke Hille Ris Lambers, Eléonore Perret, Alana R. O. Chin
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Applications in Plant Sciences, Vol 12, Iss 3, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2168-0450
DOI: 10.1002/aps3.11596
Popis: Abstract Premise To improve forest conservation monitoring, we developed a protocol to automatically count and identify the seeds of plant species with minimal resource requirements, making the process more efficient and less dependent on human operators. Methods and Results Seeds from six North American conifer tree species were separated from leaf litter and imaged on a flatbed scanner. In the most successful species‐classification approach, an ImageJ macro automatically extracted measurements for random forest classification in the software R. The method allows for good classification accuracy, and the same process can be used to train the model on other species. Conclusions This protocol is an adaptable tool for efficient and consistent identification of seed species or potentially other objects. Automated seed classification is efficient and inexpensive, making it a practical solution that enhances the feasibility of large‐scale monitoring projects in conservation biology.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje