Autor: |
Maksim V. Kukushkin |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Fractal and Fractional, Vol 7, Iss 2, p 111 (2023) |
Druh dokumentu: |
article |
ISSN: |
2504-3110 |
DOI: |
10.3390/fractalfract7020111 |
Popis: |
In this paper, we define an operator function as a series of operators corresponding to the Taylor series representing the function of the complex variable. In previous papers, we considered the case when a function has a decomposition in the Laurent series with the infinite principal part and finite regular part. Our central challenge is to improve this result having considered as a regular part an entire function satisfying the special condition of the growth regularity. As an application, we consider an opportunity to broaden the conditions imposed upon the second term not containing the time variable of the evolution equation in the abstract Hilbert space. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|