Bis-Indole Derivatives as Dual Nuclear Receptor 4A1 (NR4A1) and NR4A2 Ligands

Autor: Srijana Upadhyay, Amanuel Esayas Hailemariam, Fuada Mariyam, Zahin Hafiz, Gregory Martin, Jainish Kothari, Evan Farkas, Gargi Sivaram, Logan Bell, Ronald Tjalkens, Stephen Safe
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Biomolecules, Vol 14, Iss 3, p 284 (2024)
Druh dokumentu: article
ISSN: 14030284
2218-273X
DOI: 10.3390/biom14030284
Popis: Bis-indole derived compounds such as 1,1-bis(3′-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled with the >60% similarity of the ligand-binding domains (LBDs) of NR4A1 and NR4A2 and the pro-oncogenic activities of both receptors lead us to hypothesize that these compounds may act as dual NR4A1 and NR4A2 ligands. Using a fluorescence binding assay, it was shown that 22 synthetic DIM8-3,5 and DIM-3,5 analogs bound the LBD of NR4A1 and NR4A2 with most KD values in the low µM range. Moreover, the DIM-3,5 and DIM8-3,5 analogs also decreased NR4A1- and NR4A2-dependent transactivation in U87G glioblastoma cells transfected with GAL4-NR4A1 or GAL4-NR4A2 chimeras and a UAS-luciferase reporter gene construct. The DIM-3,5 and DIM8-3,5 analogs were cytotoxic to U87 glioblastoma and RKO colon cancer cells and the DIM-3,5 compounds were more cytotoxic than the DIM8-3,5 compounds. These studies show that both DIM-3,5 and DIM8-3,5 compounds previously identified as NR4A1 ligands bind both NR4A1 and NR4A2 and are dual NR4A1/2 ligands.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje