A Fitted Mesh Cubic Spline in Tension Method for Singularly Perturbed Problems with Two Parameters

Autor: Tariku Birabasa Mekonnen, Gemechis File Duressa
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: International Journal of Mathematics and Mathematical Sciences, Vol 2022 (2022)
Druh dokumentu: article
ISSN: 1687-0425
DOI: 10.1155/2022/5410754
Popis: A numerical treatment via a difference scheme constructed by the Crank–Nicolson scheme for the time derivative and cubic spline in tension for the spatial derivatives on a layer resolving nonuniform Bakhvalov-type mesh for a singularly perturbed unsteady-state initial-boundary-value problem with two small parameters is presented. Error analysis of the constructed scheme is discussed and shown to be parameter-uniformly convergent with second-order convergence. Numerical experimentation is taken to confirm the theoretical findings.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje