Popis: |
Abstract Background Mechanical power may serve as a valuable parameter for predicting ventilation-induced injury in mechanically ventilated patients. Over time, several equations have been developed to calculate power in both volume control ventilation (VCV) and pressure control ventilation (PCV). Among these equations, the linear model mechanical power equation (MPLM) closely approximates the reference method when applied in PCV. The dynamic mechanical power equation (MPdyn) computes power by utilizing the ventilatory work of breathing parameter (WOBv), which is automatically measured by the mechanical ventilator. In our study, conducted in patients with Covid-19 Acute Respiratory Distress Syndrome (C-ARDS), we calculated mechanical power using both the MPLM and MPdyn equations, employing different inspiratory rise times (Tslope) at intervals of 5%, ranging from 5 to 20% and compared the obtained results. Results In our analysis, we used univariate linear regression at both I:E ratios of 1:2 and 1:1, considering all Tslope values. These analyses revealed that the MPdyn and MPLM equations exhibited strong correlations, with R 2 values exceeding 0.96. Furthermore, our Bland–Altman analysis, which compared the power values derived from the MPdyn and MPLM equations for patient averages and all measurements, revealed a mean difference of −0.42 ± 0.41 J/min (equivalent to 2.6% ± 2.3%, p |