Autor: |
Susanne Bremer-Hoeve, Noortje I. van Vliet, Suzanne C. van Bronswijk, Rafaele J.C. Huntjens, Ad de Jongh, Maarten K. van Dijk |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Frontiers in Psychiatry, Vol 14 (2023) |
Druh dokumentu: |
article |
ISSN: |
1664-0640 |
DOI: |
10.3389/fpsyt.2023.1194669 |
Popis: |
BackgroundKnowledge about patient characteristics predicting treatment dropout for post-traumatic stress disorder (PTSD) is scarce, whereas more understanding about this topic may give direction to address this important issue.MethodData were obtained from a randomized controlled trial in which a phase-based treatment condition (Eye Movement Desensitization and Reprocessing [EMDR] therapy preceded by Skills Training in Affect and Interpersonal Regulation [STAIR]; n = 57) was compared with a direct trauma-focused treatment (EMDR therapy only; n = 64) in people with a PTSD due to childhood abuse. All pre-treatment variables included in the trial were examined as possible predictors for dropout using machine learning techniques.ResultsFor the dropout prediction, a model was developed using Elastic Net Regularization. The ENR model correctly predicted dropout in 81.6% of all individuals. Males, with a low education level, suicidal thoughts, problems in emotion regulation, high levels of general psychopathology and not using benzodiazepine medication at screening proved to have higher scores on dropout.ConclusionOur results provide directions for the development of future programs in addition to PTSD treatment or for the adaptation of current treatments, aiming to reduce treatment dropout among patients with PTSD due to childhood abuse. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|