An asymptotic model for solving mixed integral equation in some domains

Autor: Mohamed Abdella Abdou, Hamed Kamal Awad
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of the Egyptian Mathematical Society, Vol 28, Iss 1, Pp 1-12 (2020)
Druh dokumentu: article
ISSN: 2090-9128
DOI: 10.1186/s42787-020-00106-3
Popis: Abstract In this paper, we discuss the solution of mixed integral equation with generalized potential function in position and the kernel of Volterra integral term in time. The solution will be discussed in the space $$L_{2} (\Omega ) \times C[0,T],$$ L 2 ( Ω ) × C [ 0 , T ] , $$0 \le t \le T < 1$$ 0 ≤ t ≤ T < 1 , where $$\Omega$$ Ω is the domain of position and $$t$$ t is the time. The mixed integral equation is established from the axisymmetric problems in the theory of elasticity. Many special cases when kernel takes the potential function, Carleman function, the elliptic function and logarithmic function will be established.
Databáze: Directory of Open Access Journals