Autor: |
Riccardo Della Sala, Francesco Centurelli, Pietro Monsurro, Giuseppe Scotti, Alessandro Trifiletti |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
IEEE Access, Vol 11, Pp 19635-19644 (2023) |
Druh dokumentu: |
article |
ISSN: |
2169-3536 |
DOI: |
10.1109/ACCESS.2023.3248303 |
Popis: |
This paper presents a novel 0.3V rail-to-rail body-driven three-stage operational transconductance amplifier (OTA). The proposed OTA architecture allows achieving high DC gain in spite of the bulk-driven input. This is due to the doubled body transconductance at the first and third stages, and to a high gain, gate-driven second stage. The bias current in each branch of the OTA is accurately set through gate-driven or bulk-driven current mirrors, thus guaranteeing an outstanding stability of main OTA performance parameters to PVT variations. In the first stage, the input signals drive the bulk terminals of both NMOS and PMOS transistors in a complementary fashion, allowing a rail-to-rail input common mode range (ICMR). The second stage is a gate-driven, complementary pseudo-differential stage with an high DC gain and a local CMFB. The third stage implements the differential-to-single-ended conversion through a body-driven complementary pseudo-differential pair and a gate-driven current mirror. Thanks to the adoption of two fully differential stages with common mode feedback (CMFB) loop, the common-mode rejection ratio (CMRR) in typical conditions is greatly improved with respect to other ultra-low-voltage (ULV) bulk-driven OTAs. The OTA has been fabricated in a commercial 130nm CMOS process from STMicroelectronics. Its area is about $0.002 \ mm^{2}$ , and power consumption is less than 35nW at the supply-voltage of 0.3V. With a load capacitance of 35pF, the OTA exhibits a DC gain and a unity-gain frequency of about 85dB and 10kHz, respectively. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|