An Efficient Approach to Automatic Construction of 3D Watertight Geometry of Buildings Using Point Clouds

Autor: Yuanzhi Cai, Lei Fan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Remote Sensing, Vol 13, Iss 10, p 1947 (2021)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs13101947
Popis: Recent years have witnessed an increasing use of 3D models in general and 3D geometric models specifically of built environment for various applications, owing to the advancement of mapping techniques for accurate 3D information. Depending on the application scenarios, there exist various types of approaches to automate the construction of 3D building geometry. However, in those studies, less attention has been paid to watertight geometries derived from point cloud data, which are of use to the management and the simulations of building energy. To this end, an efficient reconstruction approach was introduced in this study and involves the following key steps. The point cloud data are first voxelised for the ray-casting analysis to obtain the 3D indoor space. By projecting it onto a horizontal plane, an image representing the indoor area is obtained and is used for the room segmentation. The 2D boundary of each room candidate is extracted using new grammar rules and is extruded using the room height to generate 3D models of individual room candidates. The room connection analyses are applied to the individual models obtained to determine the locations of doors and the topological relations between adjacent room candidates for forming an integrated and watertight geometric model. The approach proposed was tested using the point cloud data representing six building sites of distinct spatial confirmations of rooms, corridors and openings. The experimental results showed that accurate watertight building geometries were successfully created. The average differences between the point cloud data and the geometric models obtained were found to range from 12 to 21 mm. The maximum computation time taken was less than 5 min for the point cloud of approximately 469 million data points, more efficient than the typical reconstruction methods in the literature.
Databáze: Directory of Open Access Journals