The Euler numbers and recursive properties of Dirichlet L-functions

Autor: Yiwei Hou, Shimeng Shen
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-7 (2018)
Druh dokumentu: article
ISSN: 1687-1847
DOI: 10.1186/s13662-018-1853-y
Popis: Abstract The aim of this paper is using an elementary method and the properties of the Bernoulli polynomials to establish a close relationship between the Euler numbers of the second kind En∗ $E_{n}^{*}$ and the Dirichlet L-function L(s,χ) $L(s,\chi )$. At the same time, we also prove a new congruence for the Euler numbers En $E_{n}$. That is, for any prime p≡1mod8 $p\equiv 1\bmod 8$, we have Ep−32≡0modp $E_{\frac{p-3}{2}}\equiv 0\bmod p$. As an application of our result, we give a new recursive formula for one kind of Dirichlet L-functions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje