Deficient Endoplasmic Reticulum Acetyl-CoA Import in Pancreatic Acinar Cells Leads to Chronic PancreatitisSummary

Autor: Michelle M. Cooley, Diana D.H. Thomas, Kali Deans, Yajing Peng, Aurelia Lugea, Stephen J. Pandol, Luigi Puglielli, Guy E. Groblewski
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Cellular and Molecular Gastroenterology and Hepatology, Vol 11, Iss 3, Pp 725-738 (2021)
Druh dokumentu: article
ISSN: 2352-345X
DOI: 10.1016/j.jcmgh.2020.10.008
Popis: Background & Aims: Maintaining endoplasmic reticulum (ER) proteostasis is essential for pancreatic acinar cell function. Under conditions of severe ER stress, activation of pathogenic unfolded protein response pathways plays a central role in the development and progression of pancreatitis. Less is known, however, of the consequence of perturbing ER-associated post-translational protein modifications on pancreatic outcomes. Here, we examined the role of the ER acetyl-CoA transporter AT-1 on pancreatic homeostasis. Methods: We used an AT-1S113R/+ hypomorphic mouse model, and generated an inducible, acinar-specific, AT-1 knockout mouse model, and performed histologic and biochemical analyses to probe the effect of AT-1 loss on acinar cell physiology. Results: We found that AT-1 expression is down-regulated significantly during both acute and chronic pancreatitis. Furthermore, acinar-specific deletion of AT-1 in acinar cells induces chronic ER stress marked by activation of both the spliced x-box binding protein 1 and protein kinase R-like ER kinase pathways, leading to spontaneous mild/moderate chronic pancreatitis evidenced by accumulation of intracellular trypsin, immune cell infiltration, and fibrosis. Induction of acute-on-chronic pancreatitis in the AT-1 model led to acinar cell loss and glad atrophy. Conclusions: These results indicate a key role for AT-1 in pancreatic acinar cell homeostasis, the unfolded protein response, and that perturbations in AT-1 function leads to pancreatic disease.
Databáze: Directory of Open Access Journals