Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma

Autor: Hairong Wang, Michael G. Argenziano, Hyunsoo Yoon, Deborah Boyett, Akshay Save, Petros Petridis, William Savage, Pamela Jackson, Andrea Hawkins-Daarud, Nhan Tran, Leland Hu, Kyle W. Singleton, Lisa Paulson, Osama Al Dalahmah, Jeffrey N. Bruce, Jack Grinband, Kristin R. Swanson, Peter Canoll, Jing Li
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: npj Digital Medicine, Vol 7, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 2398-6352
DOI: 10.1038/s41746-024-01277-4
Popis: Abstract Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet significantly outperforms existing methods (p
Databáze: Directory of Open Access Journals