Autor: |
M. Nuthal Srinivasan, M. Chinnadurai, S. Senthilkumar, E. Dinesh |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-66496-x |
Popis: |
Abstract In recent times, video inpainting techniques have intended to fill the missing areas or gaps in a video by utilizing known pixels. The variety in brightness or difference of the patches causes the state-of-the-art video inpainting techniques to exhibit high computation complexity and create seams in the target areas. To resolve these issues, this paper introduces a novel video inpainting technique that employs the Morphological Haar Wavelet Transform combined with the Krill Herd based Criminisi algorithm (MHWT-KHCA) to address the challenges of high computational demand and visible seam artifacts in current inpainting practices. The proposed MHWT-KHCA algorithm strategically reduces computation times and enhances the seamlessness of the inpainting process in videos. Through a series of experiments, the technique is validated against standard metrics such as peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), where it demonstrates superior performance compared to existing methods. Additionally, the paper outlines potential real-world applications ranging from video restoration to real-time surveillance enhancement, highlighting the technique’s versatility and effectiveness. Future research directions include optimizing the algorithm for diverse video formats and integrating machine learning models to advance its capabilities further. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|