Autor: |
Shuang Zhao, Xin Tang, Zian Miao, Yurong Chen, Jiawei Cao, Tianyu Song, Daiting You, Yanqing Zhong, Zhe Lin, Dan Wang, Zhiguang Shi, Xinlong Tang, Dongjin Wang, Shaoliang Chen, Liansheng Wang, Aihua Gu, Feng Chen, Liping Xie, Zhengrong Huang, Hong Wang, Yong Ji |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Redox Biology, Vol 52, Iss , Pp 102290- (2022) |
Druh dokumentu: |
article |
ISSN: |
2213-2317 |
DOI: |
10.1016/j.redox.2022.102290 |
Popis: |
Endothelial dysfunction is the initial process of atherosclerosis. Heat shock protein 90 (Hsp90), as a molecular chaperone, plays a crucial role in various cardiovascular diseases. Hsp90 function is regulated by S-nitrosylation (SNO). However, the precise role of SNO-Hsp90 in endothelial dysfunction during atherosclerosis remains unclear. We here identified Hsp90 as a highly S-nitrosylated target in endothelial cells (ECs) by biotin switch assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The elevation of SNO-Hsp90 was observed in atherosclerotic human and rodent aortas as well as in oxidized LDL (oxLDL)-treated ECs. Inhibition of inducible nitric oxide synthase (iNOS) or transfection with Hsp90 cysteine 521 (Cys521) mutation plasmid decreased the level of SNO-Hsp90 in oxLDL-cultured ECs. Coimmunoprecipitation and proximity ligation assay demonstrated that SNO-Hsp90 at Cys521 suppressed the interaction between Hsp90 and activator of Hsp90 ATPase activity 1 (AHA1), but promoted the association of Hsp90 and cell division cycle 37 (CDC37). Hsp90 Cys521 mutation increased endothelial nitric oxide synthase (eNOS) activity and inhibited nuclear factor kappa-B (NF-κB) signaling, thereby increasing nitric oxide (NO) bioavailability and alleviating endothelial adhesion, inflammation and oxidative stress in oxLDL-treated ECs. Also, administration of endothelial-specific adeno-associated viruses of Cys521-mutated Hsp90 significantly mitigated vascular oxidative stress, macrophage infiltration and atherosclerosis lesion areas in high fat diet-fed ApoE-/- mice. In conclusion, SNO-Hsp90 at Cys521, that serves as a conformational switch, disrupts Hsp90/AHA1 interaction but promotes recruitment of CDC37 to exacerbate atherosclerosis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|