Automated Distress Detection, Classification and Measurement for Asphalt Urban Pavements Using YOLO

Autor: Paulina Gómez-Conti, Alelí Osorio-Lird, Héctor Allende-Cid
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Engineering Proceedings, Vol 36, Iss 1, p 58 (2023)
Druh dokumentu: article
ISSN: 2673-4591
DOI: 10.3390/engproc2023036058
Popis: In pavement management, it is essential to have a good database with information on the condition of the roads that compose the corresponding network. In Chile, such a database does not currently exist, and there is no technology that can evaluate urban pavement condition in an efficient way. On this research, more than 50,000 images of 13.2 × 2.6 m of asphalt pavement from different zones of Santiago, Chile, were obtained. These images were processed, and the following distresses were labeled with two different levels of severities: patches; potholes; and transversal, longitudinal, and fatigue cracking. These data were used to train and evaluate the following object detection convolutional neural network models: YOLOv5 and YOLOv7.
Databáze: Directory of Open Access Journals