Autor: |
Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 8, Iss 9, Pp 22178-22191 (2023) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.20231130?viewType=HTML |
Popis: |
The fractional Hardy-type operators of variable order is shown to be bounded from the grand Herz spaces $ {\dot{K} ^{a(\cdot), u), \theta}_{ p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {\dot{K} ^{a(\cdot), u), \theta}_{\rho, q(\cdot)}(\mathbb{R}^n)} $, where $ \rho = (1+|z_1|)^{-\lambda} $ and $ {1 \over q(z)} = {1 \over p(z)}-{\zeta (z) \over n} $ when $ p(z) $ is not necessarily constant at infinity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|