An Efficient Limited Memory Multi-Step Quasi-Newton Method

Autor: Issam A. R. Moghrabi, Basim A. Hassan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 5, p 768 (2024)
Druh dokumentu: article
ISSN: 12050768
2227-7390
DOI: 10.3390/math12050768
Popis: This paper is dedicated to the development of a novel class of quasi-Newton techniques tailored to address computational challenges posed by memory constraints. Such methodologies are commonly referred to as “limited” memory methods. The method proposed herein showcases adaptability by introducing a customizable memory parameter governing the retention of historical data in constructing the Hessian estimate matrix at each iterative stage. The search directions generated through this novel approach are derived from a modified version closely resembling the full memory multi-step BFGS update, incorporating limited memory computation for a singular term to approximate matrix–vector multiplication. Results from numerical experiments, exploring various parameter configurations, substantiate the enhanced efficiency of the proposed algorithm within the realm of limited memory quasi-Newton methodologies category.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje