An Efficient Limited Memory Multi-Step Quasi-Newton Method
Autor: | Issam A. R. Moghrabi, Basim A. Hassan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Mathematics, Vol 12, Iss 5, p 768 (2024) |
Druh dokumentu: | article |
ISSN: | 12050768 2227-7390 |
DOI: | 10.3390/math12050768 |
Popis: | This paper is dedicated to the development of a novel class of quasi-Newton techniques tailored to address computational challenges posed by memory constraints. Such methodologies are commonly referred to as “limited” memory methods. The method proposed herein showcases adaptability by introducing a customizable memory parameter governing the retention of historical data in constructing the Hessian estimate matrix at each iterative stage. The search directions generated through this novel approach are derived from a modified version closely resembling the full memory multi-step BFGS update, incorporating limited memory computation for a singular term to approximate matrix–vector multiplication. Results from numerical experiments, exploring various parameter configurations, substantiate the enhanced efficiency of the proposed algorithm within the realm of limited memory quasi-Newton methodologies category. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |