Matrix representation of a cross product and related curl-based differential operators in all space dimensions
Autor: | Lewintan Peter |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Open Mathematics, Vol 19, Iss 1, Pp 1330-1348 (2021) |
Druh dokumentu: | article |
ISSN: | 2391-5455 |
DOI: | 10.1515/math-2021-0115 |
Popis: | A higher dimensional generalization of the cross product is associated with an adequate matrix multiplication. This index-free view allows for a better understanding of the underlying algebraic structures, among which are generalizations of Grassmann’s, Jacobi’s and Room’s identities. Moreover, such a view provides a higher dimensional analogue of the decomposition of the vector Laplacian, which itself gives an explicit index-free Helmholtz decomposition in arbitrary dimensions n≥2n\ge 2. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |