Piezo1-driven mechanotransduction as a key regulator of cartilage degradation in early osteoarthritis

Autor: Xu Yan, Su Fu, Ying Xie, Chunlin Zhang, Xuejian Wu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Biomolecules & Biomedicine (2024)
Druh dokumentu: article
ISSN: 2831-0896
2831-090X
DOI: 10.17305/bb.2024.11156
Popis: Osteoarthritis (OA) is a prevalent degenerative disease characterized by pain and cartilage damage in its later stages, while early OA is marked by the loss of cartilage's mechanical function. Recent studies suggest that Piezo1, a mechanotransducer, may contribute to cartilage degradation under abnormal physical stress. This study investigates the mechanism by which Piezo1 mediates the loss of cartilage's mechanical properties. Using rat chondrocytes cultured in a 3D in vitro model, we found that fluid flow-induced physical stress activates constitutively expressed Piezo1, leading to increased catabolic activity and apoptosis, which, in turn, disrupts the matrix structure. Ex vivo cartilage experiments further demonstrated that the mechanical stress-induced loss of cartilage's physical properties (approximately 10% reduction in relaxation modulus) is mediated by Piezo1 and depends on cell viability. Notably, Piezo1 agonists alone did not alter the mechanical behavior of cartilage tissue. In vivo, using an OA rat model induced by anterior cruciate ligament transection, we observed cartilage integrity degradation and loss of mechanical properties, which were partially mitigated by Piezo1 inhibition. RNA sequencing revealed significant modulation of the PI3K signaling and matrix regulation pathways. Collectively, this study demonstrates that Piezo1-mediated catabolic activity in chondrocytes is a key driver of the loss of cartilage's mechanical function during the relaxation phase.
Databáze: Directory of Open Access Journals