Autor: |
Alexander Lavin, Ciarán M. Gilligan-Lee, Alessya Visnjic, Siddha Ganju, Dava Newman, Sujoy Ganguly, Danny Lange, Atílím Güneş Baydin, Amit Sharma, Adam Gibson, Stephan Zheng, Eric P. Xing, Chris Mattmann, James Parr, Yarin Gal |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 13, Iss 1, Pp 1-19 (2022) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-022-33128-9 |
Popis: |
The development of machine learning systems has to ensure their robustness and reliability. The authors introduce a framework that defines a principled process of machine learning system formation, from research to production, for various domains and data scenarios. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|