Technology readiness levels for machine learning systems

Autor: Alexander Lavin, Ciarán M. Gilligan-Lee, Alessya Visnjic, Siddha Ganju, Dava Newman, Sujoy Ganguly, Danny Lange, Atílím Güneş Baydin, Amit Sharma, Adam Gibson, Stephan Zheng, Eric P. Xing, Chris Mattmann, James Parr, Yarin Gal
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature Communications, Vol 13, Iss 1, Pp 1-19 (2022)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-022-33128-9
Popis: The development of machine learning systems has to ensure their robustness and reliability. The authors introduce a framework that defines a principled process of machine learning system formation, from research to production, for various domains and data scenarios.
Databáze: Directory of Open Access Journals