Seasonal Arctic sea ice forecasting with probabilistic deep learning

Autor: Tom R. Andersson, J. Scott Hosking, María Pérez-Ortiz, Brooks Paige, Andrew Elliott, Chris Russell, Stephen Law, Daniel C. Jones, Jeremy Wilkinson, Tony Phillips, James Byrne, Steffen Tietsche, Beena Balan Sarojini, Eduardo Blanchard-Wrigglesworth, Yevgeny Aksenov, Rod Downie, Emily Shuckburgh
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-021-25257-4
Popis: Accurate seasonal forecasts of sea ice are highly valuable, particularly in the context of sea ice loss due to global warming. A new machine learning tool for sea ice forecasting offers a substantial increase in accuracy over current physics-based dynamical model predictions.
Databáze: Directory of Open Access Journals