Autor: |
Tom R. Andersson, J. Scott Hosking, María Pérez-Ortiz, Brooks Paige, Andrew Elliott, Chris Russell, Stephen Law, Daniel C. Jones, Jeremy Wilkinson, Tony Phillips, James Byrne, Steffen Tietsche, Beena Balan Sarojini, Eduardo Blanchard-Wrigglesworth, Yevgeny Aksenov, Rod Downie, Emily Shuckburgh |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-021-25257-4 |
Popis: |
Accurate seasonal forecasts of sea ice are highly valuable, particularly in the context of sea ice loss due to global warming. A new machine learning tool for sea ice forecasting offers a substantial increase in accuracy over current physics-based dynamical model predictions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|