The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer's Disease.

Autor: Shun-Yao Ko, Hshin-An Ko, Kuo-Hsiung Chu, Tzong-Ming Shieh, Tzong-Cherng Chi, Hong-I Chen, Weng-Cheng Chang, Shu-Shing Chang
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: PLoS ONE, Vol 10, Iss 11, p e0143345 (2015)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0143345
Popis: Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer's disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.
Databáze: Directory of Open Access Journals