Autor: |
Phuc Quang Truong, Tan Do-Duy, Van-Ca Phan, Antonino Masaracchia |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, Vol 10, Iss 4 (2023) |
Druh dokumentu: |
article |
ISSN: |
2410-0218 |
DOI: |
10.4108/eetinis.v10i4.4359 |
Popis: |
Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|