Popis: |
International commercial trade in wildlife, whether legal or illegal, is one of the greatest threats to multiple species of wildlife today. Opinions on how to address it are deeply divided across the conservation community. Approaches fall into two broad categories: making the trade illegal to protect against any form of commercial trade or allowing some or all of the trade to be legal and seeking to manage it through sustainable trade. The conservation community is often deeply polarized on which is the better option. We posit that a way to choose between these options is by considering species-specific attributes of biological productivity, management context, and demand. We develop a conceptual framework to assess which option is more likely to result in successful conservation of a species. We show how to construct a Bayesian Belief Network (BBN) to model how these attributes (1) interact to affect the sustainability of the species’ population and (2) vary under different trade management regimes. This approach can support scientifically based decision-making, by predicting the likely sustainability outcome for a population of a species under different trade management regimes, given its particular characteristics and context. The BBN allows identification of key points at which conservation interventions could change the potential outcome. It also provides the opportunity to explore how different assumptions about how humans might respond to different trade regimes affects outcomes. We illustrate these ideas by using the BBN for a hypothetical terrestrial mammal species population and discuss how the BBN can be extended for species with different characteristics, for example, those that can be stockpiled or when there are multiple products. This approach has the potential to help the conservation community to assess the most appropriate regime for managing wildlife trade in a transparent, open, and scientifically based way. |