Optimal placement of distributed generation in power distribution system and evaluating the losses and voltage using machine learning algorithms

Autor: Akanksha Jain, S. C. Gupta
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Energy Research, Vol 12 (2024)
Druh dokumentu: article
ISSN: 2296-598X
DOI: 10.3389/fenrg.2024.1378242
Popis: As the modern power system continues to grow in size, complexity, and uncertainty, traditional methods may occasionally prove insufficient in addressing the associated challenges. The improper location of distributed generation varies the voltage profile, increases losses and compromises network capacity. Machine learning algorithms predict accurate site positions, and network reconfiguration improves the capacity of the power system. The proposed algorithm is a hybrid of machine learning and deep learning algorithms. It cascades Support Vector Machine as the main model and uses Random Forest and Radial Neural Networks as classification algorithms for accurately predicting DG position. The non-linearity characteristics of the DG problem are directly mapped to the proposed algorithms. The proposed algorithm is employed on familiar test setups like the IEEE 33-bus and 69-bus distribution systems using MATLAB R2017 as simulation software. The R-squared (R2) values for all parameters yield a value of 1, while the MAPE values are minimal for the proposed cascaded algorithm in contrast to other algorithms of LSTM, CNN, RNN and DQL.
Databáze: Directory of Open Access Journals