A generalization of Kruskal–Katona’s theorem

Autor: Amata Luca, Crupi Marilena
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 28, Iss 2, Pp 35-51 (2020)
Druh dokumentu: article
ISSN: 1844-0835
DOI: 10.2478/auom-2020-0018
Popis: Let K be a field, E the exterior algebra of a finite dimensional K-vector space, and F a finitely generated graded free E-module with homogeneous basis g1, . . ., gr such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr. We characterize the Hilbert functions of graded E–modules of the type F/M, with M graded submodule of F. The existence of a unique lexicographic submodule of F with the same Hilbert function as M plays a crucial role.
Databáze: Directory of Open Access Journals