Development of novel composite materials based on kaolinitic clay modified with ZnO for the elimination of azo dyes by adsorption in water

Autor: Pierre Ngue Song, Julien G. Mahy, Antoine Farcy, Cédric Calberg, Nathalie Fagel, Stéphanie D. Lambert
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Results in Surfaces and Interfaces, Vol 16, Iss , Pp 100255- (2024)
Druh dokumentu: article
ISSN: 2666-8459
DOI: 10.1016/j.rsurfi.2024.100255
Popis: In this work, ZnO nanoparticles, synthesized by the sol-gel process, are immobilized on the external surface of raw kaolinite particles and kaolinite activated by different treatments: heat treatment at 600, 700 and 800 °C; treatment in a dimethyl sulfoxide (DMSO) medium; hot acid treatment (HCl, 6M) under reflux conditions or heat treatment at 800 °C followed by acid treatment. Characterization confirmed the successful immobilization of the nanocrystalline ZnO particles in the hexagonal structure of the different clay matrices. Measurement of the zeta potential showed a sudden inversion of the nature of the surface charge of certain composite materials obtained, through zeta potential values ranging from −31 mV before doping with ZnO to +36 mV after doping. The raw kaolinite and certain composites obtained were tested in batch mode for the adsorption in aqueous solution of three anionic azo textile dyes: a monozoic (Mordant Red 19, MR19), diazoic (Direct Blue 53, DB53) and a triazoic (Direct Green 1, DG1) dye. Compared to raw kaolinite, a linear and rapid increase in the quantity of dye adsorbed is observed during the first 5 min with retention rates around 95% for the best composite materials. The adsorption efficiency strongly depends on the zeta potential of the material: the higher the latter is towards positive values, the better the adsorption capacities of the samples towards these anionic textile dyes.
Databáze: Directory of Open Access Journals