Autor: |
Jiaqi Zhao, Yuhao Zhai, Xuzhe Jia, Naiwen Deng, Kunxu Li, Guangchao Han, Rong Chen, Dong Wang, Wei Bai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Chinese Journal of Mechanical Engineering, Vol 37, Iss 1, Pp 1-13 (2024) |
Druh dokumentu: |
article |
ISSN: |
2192-8258 |
DOI: |
10.1186/s10033-024-01071-z |
Popis: |
Abstract Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance. However, an important issue is the low fatigue life of traditional ultrasonic scalpels, which affects their long-term reliability and effectiveness and creates hidden dangers for surgery. In this study, a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation. The optimal design parameters of resonance frequency and amplitude were determined. By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance. The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared. Then, the mechanism of the influence of various design elements, such as tip, shank, node position, and antinode position, on the resonance frequency, amplitude, and fatigue life of the ultrasonic scalpel was analyzed, and the optimal design principles of the ultrasonic scalpel were obtained. The proposed ultrasonic scalpel design was confirmed by simulations, impedance measurements, and liver tissue cutting experiments, demonstrating its feasibility and enhanced performance. This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|