Generalizations of $ss$-supplemented modules

Autor: I. Soydan, E. Türkmen
Jazyk: English<br />Ukrainian
Rok vydání: 2021
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 1, Pp 119-126 (2021)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
DOI: 10.15330/cmp.13.1.119-126
Popis: We introduce the concept of (strongly) $ss$-radical supplemented modules. We prove that if a submodule $N$ of $M$ is strongly $ss$-radical supplemented and $Rad(M/N)=M/N$, then $M$ is strongly $ss$-radical supplemented. For a left good ring $R$, we show that $Rad(R)\subseteq Soc(_{R}R)$ if and only if every left $R$-module is $ss$-radical supplemented. We characterize the rings over which all modules are strongly $ss$-radical supplemented. We also prove that over a left $WV$-ring every supplemented module is $ss$-supplemented.
Databáze: Directory of Open Access Journals