Novel short Agave americana based biocomposite and nanobiocomposites for automotive applications

Autor: Chinnappa Arumugam, Gandarvakottai Senthilkumar Arumugam, Ashok Ganesan, Ponnurengam Malliappan Sivakumar, Kannan Damodharan, Mukesh Doble, Sarojadevi Muthusamy
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: International Journal of Lightweight Materials and Manufacture, Vol 7, Iss 4, Pp 556-571 (2024)
Druh dokumentu: article
ISSN: 2588-8404
DOI: 10.1016/j.ijlmm.2024.03.003
Popis: Short fibers of Agave Americana (AA) was extracted from its plant leaf, was chemically treated with Ac2O, HCOOH, H2O2, KMnO4 and NaOH, and then characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), thermo-gravimetric/differential thermo-gravimetric (TGA/DTG), and field emission-scanning electron microscopy (FE-SEM). PVA stabilized copper nanoparticles from chemical reduction method was characterized using field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), powder X-ray diffraction (PXRD), Dynamic light scattering analysis (DLS), UV–visible absorption spectroscopy, Fourier Transform infrared (FT-IR) spectroscopy and Thermogravimetric analysis/differential thermogravimetry (TGA/DTG). Bio-composites (AA + Polyester Resin (PE) and hybrid nano bio-composites (AA + Polyester Resin (PE) + Cu) were prepared from the untreated and treated AA fibers and further characterized. The synergistic effect of chemical treatment on morphological (SEM), thermal (TGA/DTG), mechanical properties (flexural, tensile, impact and compressive strength) followed by % water absorption were examined. The average surface roughness values (Ra) of chemical treated fiber was identified to be in decreasing manner along with compression strength of biocomposite in the order of untreated (10.74 μm, 44.01 MPa) > NaOH (8.55 μm, 45.07 MPa) > HCOOH (3.49 μm, 24.10 MPa) Ac2O (3.24 μm, 22.10 MPa) > H2O2 (2.51um, 17.9 MPa) > KMnO4 (1.52 μm, 15.1 MPa) treated fibers. Subsequently, the addition of 2s@PVA led to reverse the order namely, the compressive strength of the bionanocomposites were Untreated (10.74 μm, 9.0 MPa)
Databáze: Directory of Open Access Journals