Autor: |
Anthony Ashmore, Rehan Deen, Yang-Hui He, Burt A. Ovrut |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Physics Letters B, Vol 827, Iss , Pp 136972- (2022) |
Druh dokumentu: |
article |
ISSN: |
0370-2693 |
DOI: |
10.1016/j.physletb.2022.136972 |
Popis: |
We study the use of machine learning for finding numerical hermitian Yang–Mills connections on line bundles over Calabi–Yau manifolds. Defining an appropriate loss function and focusing on the examples of an elliptic curve, a K3 surface and a quintic threefold, we show that neural networks can be trained to give a close approximation to hermitian Yang–Mills connections. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|