Autor: |
Jiening Zhu, Jung Hun Oh, Joseph O. Deasy, Allen R. Tannenbaum |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 17, Iss 3 (2022) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
Popis: |
In this paper, we present a network-based clustering method, called vector Wasserstein clustering (vWCluster), based on the vector-valued Wasserstein distance derived from optimal mass transport (OMT) theory. This approach allows for the natural integration of multi-layer representations of data in a given network from which one derives clusters via a hierarchical clustering approach. In this study, we applied the methodology to multi-omics data from the two largest breast cancer studies. The resultant clusters showed significantly different survival rates in Kaplan-Meier analysis in both datasets. CIBERSORT scores were compared among the identified clusters. Out of the 22 CIBERSORT immune cell types, 9 were commonly significantly different in both datasets, suggesting the difference of tumor immune microenvironment in the clusters. vWCluster can aggregate multi-omics data represented as a vectorial form in a network with multiple layers, taking into account the concordant effect of heterogeneous data, and further identify subgroups of tumors in terms of mortality. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|